Research Achievements 1 Downregulation of connexin 43 expression by high glucose reduces gap junction activity in microvascular endothelial cells. Sato T, Haimovici R, Kao R, Li AF, Roy S. Diabetes. 2002 May;51(5):1565-71. doi: 10.2337/diabetes.51.5.1565. PMID: 11978657 This paper has been cited in 60 papers, including the papers listed below. ・ Cellular signaling crosstalk between Wnt signaling and gap junctions inbenzo[a]pyrene toxicity. Won DH, Hwang DB, Shin YS, Kim SY, Kim C, Hong IS, Kang BC, Che JH, Yun JW. Cell Biol Toxicol. 2021 Jul 20. doi: 10.1007/s10565-021-09630-z. Online ahead of print. PMID: 34283317 ・ The pericyte connectome: spatial precision of neurovascular coupling is driven by selective connectivity maps of pericytes and endothelial cells and is disrupted in diabetes. Kovacs-Oller T, Ivanova E, Bianchimano P, Sagdullaev BT. Cell Discov. 2020 Jun 16;6:39. doi: 10.1038/s41421-020-0180-0. eCollection 2020. PMID: 32566247 ・ An Update on Connexin Gap Junction and Hemichannels in Diabetic Retinopathy. González-Casanova J, Schmachtenberg O, Martínez AD, Sanchez HA, Harcha PA, Rojas-Gomez D. Int J Mol Sci. 2021 Mar 21;22(6):3194. doi: 10.3390/ijms22063194. PMID: 33801118 ・ High-Glucose-Induced Rab20 Upregulation Disrupts Gap Junction Intercellular Communication and Promotes Apoptosis in Retinal Endothelial and Müller Cells: Implications for Diabetic Retinopathy. Kim D, Lewis CS, Sarthy VP, Roy S. J Clin Med. 2020 Nov 19;9(11):3710. doi: 10.3390/jcm9113710. PMID: 33227912 ・ The pericyte connectome: spatial precision of neurovascular coupling is driven by selective connectivity maps of pericytes and endothelial cells and is disrupted in diabetes. Kovacs-Oller T, Ivanova E, Bianchimano P, Sagdullaev BT. Cell Discov. 2020 Jun 16;6:39. doi: 10.1038/s41421-020-0180-0. eCollection 2020. PMID: 32566247 2 Effect of high glucose on fibronectin expression and cell proliferation in trabecular meshwork cells. Sato T, Roy S. Invest Ophthalmol Vis Sci. 2002 Jan;43(1):170-5. PMID: 11773028 This paper has been cited in 30 papers, including the papers listed below. ・ Expression of Vascular Endothelial Growth Factor-C in the Trabecular Meshwork of Patients with Neovascular Glaucoma and Primary Open-Angle Glaucoma. Hase K, Kase S, Kanda A, Shinmei Y, Noda K, Ishida S. J Clin Med. 2021 Jul 2;10(13):2977. doi: 10.3390/jcm10132977. PMID: 34279462 ・ Diabetes Exacerbates the Intraocular Pressure-Independent Retinal Ganglion Cells Degeneration in the DBA/2J Model of Glaucoma. Amato R, Lazzara F, Chou TH, Romano GL, Cammalleri M, Dal Monte M, Casini G, Porciatti V. Invest Ophthalmol Vis Sci. 2021 Jul 1;62(9):9. doi: 10.1167/iovs.62.9.9. PMID: 34232257 ・ Intraocular pressure fluctuation and neurodegeneration in the diabetic rat retina. Jung KI, Woo JE, Park CK. Br J Pharmacol. 2020 Jul;177(13):3046-3059. doi: 10.1111/bph.15033. Epub 2020 Apr 15. PMID: 32087615 ・ Metabolic Health, Obesity, and the Risk of Developing Open-Angle Glaucoma: Metabolically Healthy Obese Patients versus Metabolically Unhealthy but Normal Weight Patients. Jung Y, Han K, Park HYL, Lee SH, Park CK. Diabetes Metab J. 2020 Jun;44(3):414-425. doi: 10.4093/dmj.2019.0048. Epub 2019 Dec 23. PMID: 31950773 3 Antisense oligonucleotides modulate high glucose-induced laminin overexpression and cell proliferation: a potential for therapeutic application in diabetic microangiopathy Sato T, Paryani G, Kao RS, Li AF, Roy S. Antisense Nucleic Acid Drug Dev. 2001 Dec;11(6):387-94. doi: 10.1089/108729001753411353. PMID: 11838640 4 Short-term effect of beta-adrenoreceptor blocking agents on ocular blood flow. Sato T, Muto T, Ishibashi Y, Roy S. Curr Eye Res. 2001 Oct;23(4):298-306. doi: 10.1076/ceyr.23.4.298.5448. PMID: 11852432 5 Increase in choroidal blood flow in rabbits with endothelin-1 induced transient complete obstruction of retinal vessels. T Sato, K Takei, T Nonoyama, T Miyauchi, K Goto, S Hommura Graefes Arch Clin Exp Ophthalmol. 1995 Jul;233(7):425-9. doi: 10.1007/BF00180946 PMID: 7557507